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ABSTRACT 

During March of 2017, the S.A. Agulhas II was at dry-dock for scheduled maintenance.  

Measurements were conducted on the port-side propulsion shaft in order to perform an 

operational modal analysis.  These measurements are used alongside an inverse model of the 

shaft to investigate its axial properties.  The inverse model transforms measured propulsion 

shaft thrust into axial propeller loads using modal superposition.  Comparisons between the 

shaft design natural frequencies and those measured at dry-dock to the model’s natural 

frequencies are used to validate the parameters of the model.  It was found that the inclusion 

of thrust bearing stiffness and shaft bearing masses was necessary for accurate matching of the 

natural frequencies. 

KEY WORDS: Inverse problem; Modal superposition; Propulsion shaft thrust; Ice-induced 

propeller load; Full-scale measurement 

INTRODUCTION 

The need for safe and efficient shipping in Arctic regions is increasing, due to expected 

increases in maritime transport in ice covered seas. The propulsion systems of vessels travelling 

in icy waters are exposed to ice-related impact loading in addition to hydrodynamic loading. 

This additional loading effects the safety and efficiency of vessel operation. 

Structural failure of propulsion system components could occur due to either a loading 

condition exceeding the ultimate strength of the component, or due to a cyclic loading resulting 

in fatigue failure. Both of these loading conditions are exacerbated during propeller-ice 

interaction. This is due to increases in the maximum loading on the propeller blades during ice 

impacts. 

In order to assess the propulsion system, it is necessary to quantify the loads it is subjected to.  

This can be done through direct measurements of the loading conditions.  However, in the 

case of the propeller direct measurements can be difficult or infeasible due to sensors being 

damaged under the harsh operating conditions (Al-Bedoor, et al., 2006).  Hence, it becomes 

necessary to measure elsewhere on the propulsion shaft, and make use of these measurements 

to determine the ice-induced propeller loads through an inverse problem. 

The use of inverse problems to estimate the ice-induced propeller loads has been investigated 

in literature (Browne, et al., 1998; Ikonen, et al., 2014; De Waal, et al., 2018; Polic, et al., 2019; 
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Nickerson, 2021).  Of these investigations, only Browne, et al. (1998) considered axial loads, 

while the others focused on the estimation of ice-induced propeller moments. 

This paper presents an inverse model of the propulsion shaft of the S.A. Agulhas II (SAA II) 

that can be used to estimate axial or thrust loads on the propeller.  The model is based on 

similar principles to one developed by Nickerson (2021) for estimation of propeller moments.  

The natural frequencies of the axial inverse model are compared to the design frequencies of 

the propulsion shaft, as well as to full-scale measurements taken on the shaft during dry-dock 

operations.  This is done to validate whether the model is an accurate representation of the 

shaft axial response, and therefore suitable for the estimation of ice-induced axial propeller 

loads. 

FULL-SCALE MEASUREMENTS 

The SAA II, shown in Figure 1, was built by STX Finland in Rauma shipyard in 2012.  Her 

hull was designed and strengthened according to DNV ICE-10 requirements and she was 

classified as Polar Ice Class PC-5.  She is powered by four six-cylinder diesel engines, each 

generating 3 MW.  The propulsion system consists of two diesel-electric powertrains each 

with a 4.5 MW electric motor driving four-bladed controllable pitch propellers.  Table 1 

provides the specifications for the SAA II. 

 

Figure 1. The S.A. Agulhas II 

The SAA II was in dry-dock during March of 2017.  This was a scheduled maintenance event 

to be undertaken during the fifth year of the ship’s operations.  This allowed for the 

replacement of components not easily maintained while the ship was afloat, for example the 

anodes preventing the rusting of the hull. The hull was also sandblasted and repainted, and the 

propeller blades inspected and maintained. 

During these operations, an effort was made to conduct vibration measurements on the port 

side shaft-line in order to perform a modal analysis of the system. The data acquisition software 

used was LMS Test.Lab from Siemens (Siemens PLM Software, 2014), and the hardware 

consisted of two LMS SCADAS Mobile data acquisition units connected in a master-slave 

configuration, thirteen ICP accelerometers (PCB Piezotronics, 2021) and one impedance 

sensor (PCP Piezotronics, 2017) from PCB Piezotronics, and sledgehammer to provide 

excitation to the system. A limitation of this test was that a modal sledgehammer was not 

available. 



Table 1. Specifications for the S.A. Agulhas II (Nickerson, 2021) 

Gross tonnage 12 897 tons 

Overall length 134.2 m 

Length between perpendiculars 121.2 m 

Breadth 22 m 

Classification DNV 

Class notation 1A1 PC-5 / ICE-10 

Built by STX Finland 

Location built Rauma, Finland 

Year built 2012 

Diesel engine type Wärtsilä 6L32 

Electric motor type Converteam N3 HXC 1120 LL8 

MCR speed 140 rpm 

MCR power 4.5 MW 

MCR torque 307 kNm 

Propeller manufacturer Rolls-Royce 

No. of propeller blades 4 

Propeller diameter 4.3 

Shaft characteristics Direct drive 

No. of motors / propellers 2 / 2 

 

The shaft-line was instrumented with ICP accelerometers at three locations, each measuring 

the axial, perpendicular, and rotational vibrations. The measurement locations are highlighted 

in Figure 2.  Figure 3(a) shows the instrumentation setup at measurement location 1, with 

similar setups used at the other locations. A single propeller blade was also instrumented with 

four ICP accelerometers; at the blade root, at the centre of the blade, and one each on the leading 

and trailing edges respectively. An impedance sensor was installed on the blade tip, in an 

attempt to measure the input force from the hammer excitation in addition to acceleration. This 

installation is shown in Figure 3(b). 

 

Figure 2. Propulsion shaft accelerometer measurement locations 

 



 
 

(a) (b) 

Figure 3. Installed accelerometers: (a) on the shaft, and (b) on the blade 

The tests were conducted by exciting the shaft-line system externally with the sledgehammer 

at various locations, including the blade tip, trailing edge, and propeller hub, in both axial and 

torsional directions to obtain vibration data. The power spectral density (PSD) plots of the 

measured vibrations are shown in Figure 4.  Due to the limited excitation available for the 

large structure, the measurements on the shaft were not ideal.  The measurements on the 

blades were much cleaner as they were nearer to the point of excitation. 

 

Figure 4. PSD of shaft and blade accelerometer measurements (duration: 60 seconds, sample 

rate: 2048 Hz, Block size: 8192, Window: Flat top, Overlap: 66%) 

The first three natural frequencies of the shaft (27.0 Hz, 69.8 Hz, and 120.6 Hz), as determined 

by Rolls-Royce (Rolls-Royce AB, 2010) during design, are shown as solid black vertical lines 



in Figure 4.  It can be seen that the blade and shaft exhibit frequencies near these, at 25.5 Hz, 

67.3 Hz, and 121.8 Hz (dashed black vertical lines).  Furthermore, the blade shows additional 

frequencies at 17 Hz and 62 Hz (red vertical lines) while the shaft has additional frequencies 

at 34 Hz, 44 Hz, 57 Hz, and 102 Hz (blue vertical lines).  The additional frequencies may be 

due to local resonance phenomena.  Differences between the design frequencies and those 

measured may also be due to the ship being tested out of water, without the additional mass, 

stiffness, and damping that the water would provide which is accounted for in the design.  The 

percentage difference between the design frequencies and those measured at dry-dock are given 

in Table 2. 

Table 2. Differences between design natural frequencies and frequencies measured at dry-

dock 

 Design Dry dock 

 Freq. Freq. % Diff 

f1 27.0 25.5 5.6 

f2 69.8 67.3 3.6 

f3 120.6 121.8 1.0 

 

INVERSE MODEL 

For the model, a single shaft is considered between the propeller and thrust bearing. Figure 5 

shows the model of the propulsion shaft with a differential element selected at a distance x 

along the shaft. The forces acting on the differential element are also shown, with F(x,t) 

representing the internal propulsion shaft axial load and Fd(x,t) the applied axial load. The 

propeller is located at x = 0 while the thrust bearing is situated at x = L. The model assumes a 

constant hollow circular cross section and consistent material properties along the length of the 

shaft. For the derivation of the model, an unknown distributed axial load is initially assumed 

to be applied along the length of the shaft. 

 

Figure 5. Propulsion shaft model for propeller axial load estimation 



Newton’s second law states that the sum of the applied forces on a body is equal to the rate of 

change of the momentum of that body (Inman, 2014).  Equation 1 describes this equilibrium 

for the shaft. 

∑ 𝐹𝑖 = 𝑀�̈�

𝑖

 (1) 

 

where Fi represents the applied forces, M is the mass, and ü is the second derivative of the 

displacement in the x direction with respect to time. 

Substituting the forces applied to the differential element in Figure 5 into Equation 1 gives 

Equation 2, describing the dynamic equilibrium of the differential element. 

−𝐹(𝑥, 𝑡) + 𝐹𝑑(𝑥, 𝑡)𝑑𝑥 + (𝐹(𝑥, 𝑡) +
𝜕𝐹(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥) = 𝜌𝐴(𝑥)

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
𝑑𝑥 (2) 

 

where ρ is the shaft material density, A(x) is the cross sectional area of the shaft, F(x,t) the 

internal axial load at distance x, and Fd(x,t) the externally applied distributed axial load. 

Rearranging Equation 2 and dividing all terms by dx gives Equation 3: 

𝜌𝐴(𝑥)
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
−

𝜕𝐹(𝑥, 𝑡)

𝜕𝑥
= 𝐹𝑑(𝑥, 𝑡) (3) 

 

The axial load in the shaft at x is related to the axial deflection at x by (Shames, 1997): 

𝐹(𝑥, 𝑡) = 𝐸𝐴(𝑥)
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
 (4) 

 

with E the elastic modulus.  Substitution of Equation 4 into Equation 3 yields: 

𝜌𝐴(𝑥)
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
−

𝜕

𝜕𝑥
(𝐸𝐴(𝑥)

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
) = 𝐹𝑑(𝑥, 𝑡) (5) 

 

Assuming a uniform cross section of the shaft, the area becomes constant and can factored out 

of the partial derivative with regards to x and Equation 5 becomes: 

𝜌𝐴
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
− 𝐸𝐴

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
= 𝐹𝑑(𝑥, 𝑡) (6) 

 

Modal superposition is applied in order to transform the partial differential Equation 6 into a 

set of ordinary differential equations. The axial deflection u(x,t) can be described as: 

𝑢(𝑥, 𝑡) = ∑ 𝜑𝑛(𝑥)𝑞𝑛(𝑡)

𝑁

𝑛=0

 (7) 

 

where N is the number of mode shapes used to describe the deflection of the shaft, φn(x) are the 

mode shape values at x, and qn(t) are the corresponding modal coordinates as functions of time. 

The mode shapes are described by Equation 8 (Inman, 2014): 



𝜑𝑛(𝑥) = 𝐵𝑛 cos (
𝑛𝜋𝑥

𝐿
) , 𝑛 = 0,1, 2, … , 𝑁 (8) 

 

where the Bn are constant values determined from initial conditions.  Substitution of 

Equation 7 into Equation 6 yields: 

𝜌𝐴 ∑ 𝜑𝑛(𝑥)�̈�𝑛(𝑡)

𝑁

𝑛=0

− 𝐸𝐴 ∑ 𝜑𝑛
′′(𝑥)𝑞𝑛(𝑡) = 𝐹𝑑(𝑥, 𝑡)

𝑁

𝑛=0

 (9) 

 

where the overdots on qn(t) and the primes on φn(x) represent the second derivatives with 

respect to t and x respectively.  Differentiating the mode shape with respect to x twice leads 

to: 

𝜑𝑛
′ (𝑥) = −𝐵𝑛 (

𝑛𝜋

𝐿
) sin (

𝑛𝜋𝑥

𝐿
) (10) 

 

𝜑𝑛
′′(𝑥) = −𝐵𝑛 (

𝑛𝜋

𝐿
)

2

cos (
𝑛𝜋𝑥

𝐿
) = − (

𝑛𝜋

𝐿
)

2

𝜑𝑛(𝑥) (11) 

 

Substituting the second derivative of the mode shape, Equation 11, into Equation 9 gives: 

𝜌𝐴 ∑ 𝜑𝑛(𝑥)�̈�𝑛(𝑡)

𝑁

𝑛=0

+ 𝐸𝐴 ∑ (
𝑛𝜋

𝐿
)

2

𝜑𝑛(𝑥)𝑞𝑛(𝑡) = 𝐹𝑑(𝑥, 𝑡)

𝑁

𝑛=0

 (12) 

 

The distributed axial load Fd(x,t) applied to the shaft consists of a number of loads applied to 

the ends of the shaft, as seen in Figure 6. The propeller is modelled as an inertial load and the 

thrust load is applied at the propeller at x = 0.  The thrust bearing is modelled as a spring load 

using the bearing stiffness (kb) as spring constant. 

 

Figure 6. Axial loads applied to propulsion shaft model 

The axial load Fd(x,t) becomes: 

𝐹𝑑(𝑥, 𝑡) = 𝑇(𝑡)𝛿(𝑥 − 0) − 𝑀𝑝

𝜕2𝑢(0, 𝑡)

𝜕𝑡2
𝛿(𝑥 − 0) − 𝐶𝑝

𝜕𝑢(0, 𝑡)

𝜕𝑡
𝛿(𝑥 − 0)

− 𝑘𝑏𝑢(𝐿, 𝑡)𝛿(𝑥 − 𝐿) 

(13) 

 



with T the propeller thrust load, Mp the mass of the propeller (and entrained water), Cp the 

hydrodynamic damping coefficient, and δ is the Dirac-delta function which states that for some 

constant value a: 

𝛿(𝑥 − 𝑎) = { 
1, 𝑥 = 𝑎
0, 𝑥 ≠ 𝑎

 (14) 

 

In order to remove the summations from Equation 12, the orthogonality of the mode shapes is 

used (Inman, 2014). This means that: 

∫ 𝜑𝑚(𝑥)𝜑𝑛(𝑥)𝑑𝑥
𝐿

0

= {

0, 𝑛 ≠ 𝑚
𝐿, 𝑛 = 𝑚 = 0

  
𝐿

2
, 𝑛 = 𝑚

 (15) 

 

Also note that: 

∫ 𝜑𝑚(𝑥)𝛿(𝑥 − 𝑎)𝑑𝑥
𝐿

0

= 𝜑𝑚(𝑎)𝐻(𝐿 − 𝑎) (16) 

 

with H the Heaviside step function: 

𝐻(𝐿 − 𝑎) = { 
0, 𝐿 < 𝑎
1, 𝐿 ≥ 𝑎

 (17) 

 

Equation 13 is substituted into Equation 12, multiplied through by φm(x), and integrated over 

the length of the shaft.  Taking note of the relationships in Equations 15 and 16, yields a 

separate ordinary differential equation for each mode shape n, Equation 18 for n = 0 and 

Equation 19 for n = 1, 2, …, N. 

𝜌𝐴𝐿�̈�0(𝑡) = 𝑇(𝑡)𝜑0(0) − 𝑀𝑝

𝜕2𝑢(0, 𝑡)

𝜕𝑡2
𝜑0(0) − 𝐶𝑝

𝜕𝑢(0, 𝑡)

𝜕𝑡
𝜑0(0)

− 𝑘𝑏𝑢(𝐿, 𝑡)𝜑0(𝐿) 

(18) 

 

𝜌𝐴
𝐿

2
�̈�𝑛(𝑡) + 𝐸𝐴

(𝑛𝜋)2

2𝐿
𝑞𝑛(𝑡)

= 𝑇(𝑡)𝜑𝑛(0) − 𝑀𝑝

𝜕2𝑢(0, 𝑡)

𝜕𝑡2
𝜑𝑛(0) − 𝐶𝑝

𝜕𝑢(0, 𝑡)

𝜕𝑡
𝜑𝑛(0)

− 𝑘𝑏𝑢(𝐿, 𝑡)𝜑𝑛(𝐿) 

(19) 

 

Using modal superposition, Equation 7, once again for the deflection term in Equations 18 and 

19 yields the final equations for each mode shape used in the model, Equation 20 for n = 0 and 

Equation 21 for n = 1, 2, …, N. : 



𝜌𝐴𝐿�̈�0(𝑡) + 𝑀𝑝𝜑0(0) ∑ 𝜑𝑖(0)�̈�𝑖(𝑡)

𝑁

𝑖=0

+ 𝐶𝑝𝜑0(0) ∑ 𝜑𝑖(0)�̇�𝑖(𝑡)

𝑁

𝑖=0

+ 𝑘𝑏𝜑0(𝐿) ∑ 𝜑𝑖(𝐿)𝑞𝑖(𝑡)

𝑁

𝑖=0

− 𝑇(𝑡)𝜑0(0) = 0 

(20) 

 

𝜌𝐴
𝐿

2
�̈�𝑛(𝑡) + 𝑀𝑝𝜑𝑛(0) ∑ 𝜑𝑖(0)�̈�𝑖(𝑡)

𝑁

𝑖=0

+ 𝐶𝑝𝜑𝑛(0) ∑ 𝜑𝑖(0)�̇�𝑖(𝑡)

𝑁

𝑖=0

+ 𝐸𝐴
(𝑛𝜋)2

2𝐿
𝑞𝑛(𝑡)

+ 𝑘𝑏𝜑𝑛(𝐿) ∑ 𝜑𝑖(𝐿)𝑞𝑖(𝑡)

𝑁

𝑖=0

− 𝑇(𝑡)𝜑𝑛(0) = 0 

(21) 

 

For the inverse problem there are N equations, one for each mode shape, and N + 1 unknowns, 

the qn terms and the propeller thrust load T(t). Therefore, one extra equation is necessary and 

this comes from a thrust measurement taken on the shaft at x = xa: 

𝐹(𝑥𝑎, 𝑡) = 𝐸𝐴
𝜕𝑢(𝑥𝑎, 𝑡)

𝜕𝑥
= 𝐸𝐴 ∑ 𝜑𝑛

′ (𝑥)𝑞𝑛(𝑡)

𝑁

𝑛=0

 (22) 

 

Equations 20 to 22 can then be written in matrix form, which facilitates their solution using a 

numerical time integration scheme: 

𝐌�̈� + 𝐂�̇� + 𝐊𝐪 = 𝐅, 𝐪 = {𝑞0 𝑞1 𝑞2 … 𝑞𝑁 𝑇}𝑇 (23) 

 

The solution is obtained using the JWH-α numerical time integration scheme.  This scheme 

was first presented by (Jansen, et al., 1999) for the integration of the Navier-Stokes equations.  

It was recommended for use in structural dynamic problems by (Kadapa, et al., 2017), who 

tested the method against time integrations schemes.  It was shown that this method has 

improved numerical dissipation and dispersion properties when compared to other methods, 

and that it does not suffer from overshoot. 

It should be noted that additional masses can be added to the propulsion shaft by projecting 

them onto the modal equations, similar to how the propeller mass was accounted for.  This 

allows for the model to consider additional masses such as bearings or couplings.  Similarly, 

additional damping or stiffness can be considered. 

RESULTS AND DISCUSSION 

The natural frequencies of the model were compared to the design values from Rolls-Royce 

AB (2010) and the dry-dock measurements.  Three iterations of the model were considered to 

investigate the effect of additional parameters on the model.   

The first iteration considered the thrust bearing as a fixed support, and thus there was no spring 

stiffness kb.  Instead, u(L,t) = 0 was introduced as a boundary condition, resulting in different 

mode shapes.  The derivation of the model is the same as that presented previously, while 

using the mode shape below: 



𝜑𝑛(𝑥) = 𝐵𝑛 sin (
(2𝑛 − 1)𝜋(𝐿 − 𝑥)

2𝐿
) , 𝑛 = 0,1, 2, … , 𝑁 (8) 

 

The second iteration of the model is that discussed in the previous section.  The thrust bearing 

is modelled as a spring support, using the stiffness value provided by the manufacturer.  The 

third iteration also treats the thrust bearing as a spring support.  In addition, the masses of the 

thrust bearing, stern tube bearings, and shaft coupling were modelled.  The parameters for the 

models are provided in Table 3. 

Table 3. Parameters for numerical model (Rolls-Royce AB, 2010) 

Parameter Value 

Propeller mass 13 427 kg 

Shaft outer diameter 0.5 m 

Shaft inner diameter 0.175 m 

Shaft length 28.54 m 

Shaft elastic modulus 210 x 109 Pa 

Shaft density 7 850 kg/m3 

Thrust bearing stiffness 5.0 x 109 N/m 

Thrust bearing mass 5 850 kg 

Thrust shaft mass 4 740 kg 

Aft stern tube bearing mass 907 kg 

Middle stern tube bearing mass 319 kg 

Fore stern tube bearing mass 341 kg 

Shaft coupling mass 1 400 kg 

 

The natural frequencies of the models are compared to the design frequencies and those 

measured at dry-dock in Table 4.  It can be seen that treating the thrust bearing as an ideal 

fixed support results in the largest disagreement between the model frequencies, and the 

design/measured frequencies.  Introducing the bearing stiffness and the additional masses 

leads to a more accurate model.  This suggests that it is import to account for all the mass and 

stiffness in the propulsion shaft system in order to produce an accurate axial model.  This is 

contrary to the torsional case as it was found by Nickerson (2021) that a similar inverse model 

for propeller moment estimation only needed to consider the shaft, propeller, and motor inertias.  

The bearing inertias were not necessary to achieve a similar frequency response, and including 

them resulted in only minor increases in accuracy.  

It can be seen from Table 4 that the difference in natural frequency, especially the second and 

third modes, is still significant by the third iteration of the model.  This is likely due to 

additional mass and stiffness that is not taking into account by the model.  Specifically, the 

model assumes a shaft of constant hollow cross section.  However, the actual shaft has a 

number of outer and inner diameter changes along its length, resulting in a cross sectional area 

that varies along x.  Towards both ends of the shaft, the area increases resulting in additional 

mass which would further reduce the natural frequencies of the model. 

 

 



Table 4. Comparison of natural frequencies between design, dry-dock measurements, and 

inverse model 

 

Model with fixed support 
Model with spring 

support 

Model with spring 

support and additional 

masses 

 

Freq. 
% Diff 

Design 

% Diff 

Dry-

dock 

Freq. 
% Diff 

Design 

% Diff 

Dry-

dock 

Freq. 
% Diff 

Design 

% Diff 

Dry-

dock 

f1 31.7 17.4 24.3 26.9 0.4 5.5 26.2 2.9 2.8 

f2 106.2 52.2 57.8 89.4 28.1 32.8 78.6 12.6 16.8 

f3 190.9 58.3 56.7 164.5 36.4 35.1 135.1 12.0 10.9 

 

CONCLUSIONS 

An inverse model of the SAA II Propulsion shaft for the estimation of axial or thrust propeller 

loads has been developed and presented.  The intended use for the model is the estimation of 

ice-induced propeller axial loads.  To determine its suitability to this application, the model 

has been investigated in terms of its frequency response. 

The natural frequencies of the model have been compared to the design specifications and 

measurements conducted in dry-dock.  It was found that the model could be made more 

accurate by considering the effects of all additional masses and stiffness, other than just the 

shaft and propeller. 

The model is already showing sufficient accuracy with regards to the first natural frequency.  

Thus, the model may be used to estimate propeller axial loads should the shaft response be 

dominated by the first mode.  Full-scale measurements of the shaft axial response to ice 

impacts on the propeller blades may be used to verify whether this mode is dominant. 

Future research should consider modelling the shaft with varying cross sectional area, as 

accounting for the full mass of the shaft should lead to a more accurate model.  Additionally, 

bearing lubrication stiffness and damping may be accounted for. 
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