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ABSTRACT 

This paper has presented the results of three-dimensional non-smooth discrete element 

simulations for a structure-multiple ice floes interaction under managed ice conditions. To 

represent ice failure, the authors introduced a breakable ice element consisting of small square 

rigid bodies with a fixed joint function of the physics engine of Bullet to our simulation model. 

Bullet physics engine uses parameters of the constraint force mixing (𝛴) and the error reduction 

parameter to permit Baumgarte stabilization method which reduces constraint error efficiently. 

Since it is reported that 𝛴 greatly contributes to the hardness of constraints, we performed the 

plate deflection test in the numerical simulation and compare with the experiment data. The 

primary finding is that an elastic modulus of an ice floe can be determined by the element size 

and the constraint force mixing parameter. To investigate the effect of the elastic modulus 

determined by this approach on ice load, numerical simulations were conducted under managed 

ice conditions using 0.6 m-square ice floes with the ice elastic modulus of about 200, 60, and 

30 MPa, respectively. The simulated result for the ice floes with an elastic modulus of 200 MPa 

indicates the smaller mean ice load and the larger number of broken ice floes compared to that 

with an elastic modulus of 60 MPa. This can be explained based on the hybrid model using 

Lindqvist and KPR models. 

 

KEY WORDS: Non-smooth Discrete Element Method; Constraint Force Mixing; Baumgarte 

stabilization method; Managed Ice Floes; Global Ice Load Ice. 

 

INTRODUCTION 

The United States Geological Survey has reported that about 13% of the world’s undiscovered 

oil and 30% of the world’s undiscovered gas may be found in the area north of the Arctic Circle 

(Gautier and Moore, 2017). It is also mentioned that sea ice has been declining in the Arctic 

sea, where oil and gas development is expected. Arctic resource development, however, suffers 

great threat from sea ice and iceberg. In the case of using a floating structure such as a drilling 

rig at sites where sea ice exists, ice management which is an operation to break sea ice into 

smaller pieces by icebreakers is carried out in order to reduce the ice load and improve the 

station keeping ability. 

Managed ice floes collide with the structure or other floes resulting in horizontal and/or vertical 
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displacement and in some cases global ice failure such as bending or splitting occurs. To 

numerically simulate such managed ice floes-structure interaction, it is necessary to deal with 

multiple body problems. Discrete Element Methods (DEMs) are often used for these problems 

in many fields. In ice engineering, for example, Polojärvi et al. (2012) have conducted and 

simulated laboratory-scale punch through tests on floating rubble consisting of plastic blocks 

with a 3D discrete numerical model. Konno et al. (2013) have numerically reproduced brash 

ice channel experiments with more than 104 ice pieces by using the Open Dynamics Engine 

(ODE). Lubbad and Løset (2015) have developed a simulator dealing with the interaction 

between managed ice and floating structures by DEM with analytical closed form solutions to 

represent the icebreaking processes. However, there is little literature comparing ice loads, the 

behavior of ice floes, and ice failure between numerical simulations and ice tank tests on 

managed ice conditions. The authors have been developing a DEM simulation by using the 

Bullet Physics (Coumans, 2017), one of the open source dynamics libraries, since 2017 and 

showed some results such as the size effect of ice floes and the overestimated peak load 

measured in an ice tank test conducted in 2017 at the ice model basin of National Maritime 

Research Institute (Hasegawa et al., 2018; 2019a). In this simulation, ice failure, which was 

observed in the test, was not taken into account. Hasegawa et al. (2019b) introduced a breakable 

ice element consisting of small rigid bodies with a fixed joint function of the physics engine to 

our numerical simulation method in order to represent ice failure. The results show that the 

breakable ice elements reasonably reduce peak loads to the experiment. 

Bullet physics engine uses parameters of the constraint force mixing (𝛴) and the error reduction 

parameter when adopting the fixed joint function to permit Baumgarte stabilization method 

which reduces constraint error efficiently.  𝛴  can be expressed by a time step, spring and 

damping constants, and Smith (2006) has reported that 𝛴 greatly contributes to the hardness 

of constraints. In this study, therefore, we investigated the relationship between the elastic 

modulus of the ice model and constraint stabilization parameters used in the physics engine 

when combining ice elements. 

 

NUMERICAL SIMULATION 

Non-smooth Discrete Element Method 

Discrete Element Methods (DEMs) are often used for multiple body problems in many fields. 

There are roughly two approaches in DEMs, one is a smooth approach (Cundall and Strack, 

1979) in which an interaction force is applied according to the penetration amount of objects 

by taking into account of the viscoelasticity nature of contact. The other is a non-smooth 

approach (Jean, 1999) in which objects are assumed to be rigid in general. Collision and stick-

slip friction transition are considered as instantaneous events according to the given contact 

law. The authors compared the results by non-smooth DEM simulation with the experimental 

results in the case of single ice floe-structure interaction and showed that the impact load can 

be qualitatively reproduced well (Hasegawa et al., 2018). The projected Gauss-Seidel method 

(Catto, 2005) is used for solving the constraint forces by satisfying the constraint condition at 

each time step. To implement the non-smooth DEM, Bullet Physics Library version 8.26 

developed by Coumans (2017) was used in this study. 

Breakable Ice Element 

The image of the breakable ice element adopted in this paper is shown in Figure 1. An ice floe 



is divided into small rigid elements which are connected to each other through a fixed joint 

function of the physics engine. Ice failure is simply represented by disconnecting the joint when 

the constraint force exerted on the joint exceeds a threshold based on ice strength. This 

approach is often used for a collapse simulation of a building which is necessary to track a 

large number of fragments, e.g., in Hamano et al. (2016) and in Walter and Kostack (2015). 

 

 
(a) Ice floe consisting of small elements 

 
(b) Forces considered at joints 

Figure 1. Image of breakable ice element 

 

In this method, a shape of a broken ice floe depends on a shape of an ice element. We used 

elements with a square shape in this paper. Although this results in a simple failure pattern, the 

movement and hydrodynamic force on the broken ice floe can be calculated more simply than 

complicated shapes. Ice failure occurs if one of the following conditions is satisfied at each 

joint: 
 

𝜆𝑐 > 𝜀𝑐 = 𝐿𝑒𝑇𝑒
2𝜎𝑐 for compression failure (1) 

𝜆𝑠 > 𝜀𝑠 = 𝐿𝑒𝑇𝑒
2𝜎𝑠 for shear failure (2) 

𝜆𝑏 > 𝜀𝑏 =
𝐿𝑒𝑇𝑒

2

6
𝜎𝑏 for bending failure (3) 

 

where 𝜆 is the constraint force/moment, 𝜀 is the threshold, 𝐿𝑒 is the length of the element, 

𝑇𝑒 is the thickness of the element, and 𝜎 is the ice strength. Subscripts 𝑐, 𝑠, and 𝑏 denote 

compression, shear, and bending, respectively. We conducted a cantilever-beam test in the 

numerical simulation and confirmed that ice failure was properly reproduced in this model 

(Hasegawa et al., 2019b). 

Baumgarte Stabilization Method and Elastic Modulus of Breakable Ice Element 

Bullet physics engine uses parameters of the constraint force mixing (𝛴) and the error reduction 

parameter (𝛤) to permit Baumgarte stabilization method (Baumgarte, 1972) which reduces 

constraint error efficiently. 𝛴 and 𝛤 are expressed as 

 

𝛴 =
1

𝛥𝑡𝐾 + 𝐷
 (4) 

𝛤 =
𝛥𝑡𝐾

𝛥𝑡𝐾 + 𝐷
 (5) 

 

where 𝛥𝑡  is the timestep, 𝐾  is the spring constant and 𝐷  is the damping constant. 

Joints

Axial Force Axial ForceShear Force

Shear Force

Shear Force Shear Force

Bending Moment
Bending Moment



Constraint forces can be reinterpreted as those arising from the same effect as a spring-damper 

system (Li et al., 2018), which means that elements are connected by a spring and a damper. 

The value of 𝛤 is set to 0.8 within the recommended range in Bullet. It is reported that 𝛴 

greatly contributes to the hardness of constraints (Smith, 2006). Therefore, we performed the 

plate deflection test in the numerical simulation and compare with the experiment data. The 

results are shown in Figure 2 when the sizes of an ice sheet (𝐿𝑖 × 𝐵𝑖 × 𝑇𝑖) are 5.4 × 5.4 × 

0.03 m3 and 2.7 × 2.7 × 0.03 m3 and the element sizes (𝐿𝑒) is 0.20 m. From the results, it is 

found that the elastic modulus is determined by the value of 𝛴. In this study, we used an 

element size of 0.20 m with 𝛴 of 0.016 for the ice elastic modulus of about 60 MPa which 

was the same value as the experimental condition (Hasegawa et al., 2019b). In addition, to 

investigate the effect of the elastic modulus determined by this approach on ice load, numerical 

simulations were conducted using an element size of 0.20 m with 𝛴 of 10-10 and 0.03 for the 

ice elastic modulus of about 200 and 30 MPa, respectively. 

 

 
Figure 2. Influence of 𝛴 on the elastic modulus of the numerical ice floe. The target 

elastic modulus (𝐸) of 60.0 MPa is obtained from the experiment by a plate deflection 

method (Hasegawa et al., 2019b). 

 

Simulation Design 

We numerically simulated the structure-multiple ice floes interaction corresponding to the 

experiments. Table 1 summarizes the simulation conditions. The bending strength was obtained 

from the strength tests in the experiment. The compressive strength and the shear strength were 

set to be four times and twice as large as the bending strength respectively (Schwarz and Weeks, 

1977). An ice-ice friction coefficient of 0.3 and an ice-structure friction coefficient of 0.2 were 

chosen based on values of 0.02-0.7, which are reported in the literature (Frederking and Baker, 

2002; Lishman et al., 2009; Pritchard et al., 2012). Although the friction coefficient tends to 

increase as the sliding speed and the normal force are reduced according to Repetto-Llamazares 

et al. (2011) and Sukhorukov and Løset (2013), the constant value was used in our simulation. 

The authors have already addressed the relationship between constant friction coefficients and 

the behavior of numerical ice floes (Hasegawa et al., 2019b). 

The coordinate system and the initial arrangement of ice floes are shown in Figure 3. The 

structure model has an inverted conical shape with the principal dimensions shown in Figure 4 

and Table 2. The initial arrangements of ice floes were reproduced from those of the experiment 

(Hasegawa et al., 2019b). As an example, Figure 5 shows snapshots of the numerical simulation 

for the ice floe with the elastic modulus of 60 MPa. The numerical model of the structure 

advanced at a constant speed of 0.07 m/s from 𝑥 = 2 m in the surge direction and collided 



with ice floes arranged in the range of 𝑥 ≥ 6 m and -2.4 ≤ 𝑧 ≤ 2.4 m. No other than the surge 

movement of the structure model was taken into account, and the ice floes were able to move 

in 6 degrees of freedom. In the present simulation, the hydrodynamic force was applied to ice 

floes on the assumption of a simple flow around the structure (Hasegawa et al., 2018). 

 

Table 1. Simulation conditions 

 Parameter Symbol Unit Value 

General timestep 𝛥𝑡 s 0.02 

 error reduction parameter 𝛤 - 0.8 

Ice concentration 𝐼𝐶 % 75 

 thickness 𝑇𝑖 m 0.033 

 density 𝜌𝑖 kg/m3 930.0 

 bending strength 𝜎𝑏 kPa 36.4 

 compressive strength 𝜎𝑐 kPa 145.6 

 shear strength 𝜎𝑠 kPa 72.8 

Ice floe length × breadth 𝐿𝑖  × 𝐵𝑖 m 0.60 × 0.60 

 square element size 𝐿𝑒  m 0.20 

 elastic modulus 𝐸 MPa 30, 60, 200 

 constraint force mixing 𝛴  0.03, 0.016, 10-10 

Water density 𝜌𝑤 kg/m3 1000.0 

Structure speed 𝑉 m/s 0.07 

Coef. of 

restitution 

ice-ice 𝑒𝑖𝑖 - 0.0 

ice-structure 𝑒𝑖𝑠 - 0.0 

Coef. of 

friction 

ice-ice 𝑓𝑖𝑖 - 0.3 

ice-structure 𝑓𝑖𝑠 - 0.2 
 

 

 
Figure 3. Initial arrangement of ice floes reproducing the experiment in the numerical 

simulation. The structure moved from 𝑥 = 2 m at a constant speed in the surge direction. 

The shaded area shows an ice sheet placed for ice-ice contact at the wall as well as in the 

experiment. 

 



 

Figure 4. Cross-section view of the conical 

structure model 

Table 2. Principal dimensions of conical 

structure 

Parameter Unit Value 

Breadth maximum m 1.472 

Breadth water line m 1.228 

Draft m 0.443 

Depth molded m 0.565 
 

 

 

Figure 5. State of ice floes (white rectangular ones) around the structure (the yellow one) in 

the numerical simulation for 𝐿𝑒 of 0.20 m. The lines (red, green, blue, and white) from the 

center of the structure indicate the direction (𝑥, 𝑦, 𝑧 and synthetic) and its magnitude of 

the ice load acting on the structure. The red and green lines from ice floes show the normal 

and frictional load applied to each contact point, respectively. 

 

RESULTS AND DISCUSSIONS 

In this paper, we focused on the ice load exerted on the structure in the surge direction. We 

defined the time at which a steady state of the load began as 0 s. Also, a hydrodynamic 

resistance of the structure obtained in open water was subtracted from the results. We analyzed 

the results of 150 s corresponding to a towing distance of 10.5 m. The mean of the maximum 

ice load was obtained by dividing the analysis section into three, extracting the maximum load 

during the 50 s, and averaging those three values. The standard deviation of the maximum ice 

load was calculated from the mean of the maximum ice load and the three maximum loads 

during each 50 s. 

Figures 6 and Table 3 show the time history and the summary statistic of ice load. Figure 6 

shows that peak loads had irregularities in terms of time and magnitude for each condition. 

From Table 3, the mean values of both simulation results with 𝐸 of 30 and 200 MPa were 

about 10% smaller than that with 𝐸 of 60 MPa. The mean of the maximum load was almost 

equal at about 120 N when 𝐸 was 60 and 200 MPa and became minimum at about 93 N for 

𝐸 of 30 MPa. It is noted that repeating many simulations with different initial arrangements of 

ice floes may show a different trend. The mean and maximum load of the experiment for 𝐸 of 

60 MPa were about 38.8 N and 102.7 N, respectively (Hasegawa et al., 2019b). 

 

6 component load cell

ice floe

1.0 m

0.443 m

45 deg



  
Figure 6. Ice load in surge direction in steady state. Each is shifted by 100 N. 

 

Table 3. Summary statistics of ice load in surge direction and the ratio of the number of 

broken ice floes to the total number of ice floes (189) after each test. The bracketed value 

shows a percentage difference compared to the simulation result for 𝐸 = 60 MPa. 

Parameter Mean [N] SD [N] 
Maximum [N] Ratio of ice 

failure [%] 0-50 s 50-100 s 100-150 s Mean SD 

𝐸 = 30 MPa 26.50 

(12.5%) 

15.52 

(15.8%) 

106.58 46.75 126.84 93.39 

(20.8%) 

34.00 

(8.3%) 

10.6 

𝐸 = 60 MPa 30.28 18.43 162.22 93.10 98.50 117.94 31.39 10.1 

𝐸 = 200 MPa 28.32 

(6.5%) 

18.67 

(1.3%) 

86.48 127.36 150.30 121.38 

(2.9%) 

26.39 

(15.9%) 

17.5 

 

 

We summarize the ratio of the number of broken ice floes to the total number of ice floes after 

each test shown above in the right column of Table 3. The simulated result of the broken ice 

floes ratio using the same 𝐸 of 60 MPa as the experiment was about a half of the experimental 

result of about 22% (Hasegawa et al., 2018). Although the simulated result using the lower 𝐸 

of 30 MPa without changing the ice strength was also about 50% less than the experimental 

result, the simulated result using the higher 𝐸 of 200 MPa showed about a 75% increase in 

the number of broken ice floes in comparison with the other simulation results. It was observed 

that most frequent the mode of ice failure was due to bending in both the experiment and the 

numerical simulation. 

Table 3 gives a large difference in the number of broken ice floes caused by the difference in 

elastic modulus even under the same ice strength conditions. We confirmed this validity with 

the hybrid model of ice load using Lindqvist (1989) and Kashitelijan-Poznjok-Ryblin (Nozawa, 

2006. Hereafter denoted as KPR) models proposed by Uto et al. (2015). 

The hybrid model is applicable for ice floes with various sizes and concentration, and areal 

restrictions, by coupling the limit momentum and limit stress load models. The mean of ice 

load is determined as the lower value from the two load scenarios, i.e., the limit momentum 

scenario where the load is determined by the mass and the relative speed of small ice floes, and 

the limit stress scenario where the load is determined by ice failure of large ice floes. Using the 

two load scenarios, the hybrid model of ice load (𝑅𝐹) is obtained by 𝑅𝐹 = min[𝑅𝐿𝑆, 𝑅𝐿𝑀], 
where 𝑅𝐿𝑆 and 𝑅𝐿𝑀 are the limit stress load of the extended Lindqvist model (𝑅𝐿𝐹) and the 

limit momentum load of KPR model (𝑅𝑆𝐹) as follows: 
 

𝑅𝐿𝑆 = 𝐼𝐶 × 𝑅𝐿𝐹 (6) 



𝑅𝐿𝑀 = 𝑅𝑆𝐹  (7) 

 

Subscripts 𝐹, 𝐿𝐹, 𝑆𝐹, 𝐿𝑆, and 𝐿𝑀 denote floe, large floe, small floe, limited stress, and 

limited momentum, respectively. 𝑅𝐿𝐹 and 𝑅𝑆𝐹 were calculated based on Uto et al. (2015). 

The Lindqvist model considers the ice load as the sum of the components from ice failure by 

crushing and bending, and submergence of broken ice pieces. On the other hand, the KPR 

model assumes ice load in small ice floes as the sum of impact, dissipative, and static 

components. It is noted that no ice failure and submergence of ice floes are taken into account 

in the KPR model. 

Figure 8 shows the mean ice load obtained from Equations (6) and (7) for the 0.6 m-square ice 

floes. 𝑅𝐿𝑀 was lower than 𝑅𝐿𝑆 when 𝐸 was smaller than about 10 MPa. The limit stress 

load became dominant when 𝐸 was larger than about 10 MPa, which means that ice failure 

occurs more frequently. The mean ice load of the hybrid model was about 27% larger than the 

experimental result of about 39 N because the Lindqvist model, which is used for larger ice 

floes, always includes the crushing effect which was not observed in the experiment (Hasegawa 

et al., 2019b). In the experiment, as shown in Figure 5, the ice floes were relatively small and 

ice concentration was 75%, hence the ice floes moved easily in the horizontal and vertical 

directions, and ice failure by crushing did not occur. Although there is a quantitative difference 

in the mean ice load between the simulation and the hybrid model, a qualitative change in the 

mean ice load due to 𝐸 gives that the mean ice load decreases as 𝐸 increases as shown in 

Figure 8. As for the managed ice condition targeted in this study, it is reasonable to consider an 

ice floe as an elastic body because the ice floes are plate shaped and the collision speed is small. 

As 𝐸 increases, the characteristic length of ice floes increases, and the failure resistance due 

to bending decreases, so that ice failure by bending mode occurs much more frequently. 

Therefore, it can be explained that the simulated result for the ice floes with 𝐸 of 200 MPa 

indicates the smaller mean ice load and the larger number of broken ice floes (see Table 3) 

compared to that with 𝐸 of 60 MPa. The mean ice load of the hybrid model with 𝐸 of 30 

MPa was larger than that with 𝐸 of 60 MPa, whereas the simulated result showed the opposite 

tendency as given in Table 3. Considering that 𝑅𝐿𝑀 is overestimated since the KPR model 

does not take submergence of ice floes into account, the red line of 𝑅𝐿𝑀 in Figure 8 goes down 

and the intersection with the 𝑅𝐿𝑆 moves towards larger 𝐸. This effect probably reduces the 

simulated result with 𝐸 of 30 MPa. 

 

 
Figure 8. Mean ice load as a function of an elastic modulus of ice floes using the hybrid 

model proposed by Uto et al. (2015). The lower value between 𝑅𝐿𝑆 and 𝑅𝐿𝑀 is 

determined as the mean ice load for each elastic modulus of ice floes. 

 



For ice floes having various characteristics such as size and strength, it is inappropriate to 

evaluate if ice failure will occur using the hybrid model because KPR model assumes the 

distribution of homogeneous ice floes. On the basis of the analytical results of an ice floe size 

effect on the ice failure mode by Lu et al. (2016), Sawamura and Pedersen (2018) adopted an 

algorithm whereby ice failure due to splitting and bending mode is considered when an ice floe 

size is larger than the characteristic length in their numerical simulation for an icebreaker 

advancing into ice-covered waters. Therefore, in our simulation model, it seems appropriate to 

introduce the breakable ice element into ice floes larger than the characteristic length. The 

characteristic length of ice floes used in this study had approximately 0.38 m when 𝐸 was 60 

MPa. Since the ice failure due to bending mode is related to the characteristic length of ice 

floes, the breakable ice element size (𝐿𝑒) should be smaller than it. 

 

CONCLUSIONS 

This paper has presented the results of three-dimensional non-smooth discrete element 

simulations for a structure-multiple ice floes interaction under managed ice conditions. To 

represent ice failure, we introduced a breakable ice element consisting of small square rigid 

bodies with a fixed joint function of the physics engine of Bullet to our simulation model. The 

following results were obtained: 

An elastic modulus of an ice floe can be determined by the element size and the constraint force 

mixing (𝛴) used in Baumgarte stabilization method. Based on the hybrid model using Lindqvist 

and KPR models, it can be explained that the simulated result for the ice floes with 𝐸 of 200 

MPa indicates the smaller mean ice load and the larger number of broken ice floes (see Table 

3) compared to that with 𝐸 of 60 MPa. Therefore, our approach enables the non-smooth DEM 

simulation on global ice load by managed ice floes considering the elastic modulus. 
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